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PROBLEMS IN E U I D  FLOW INVOLVING SIGNIFICANT 
SOURCE TERMS IN STEADY-STATE LINEAR SYSTEMS 

J. N. LILLINGTON 

U.K.A.E.A. A.E.E. Winfrith, Worchester, Dorset, England 

SUMMARY 

This paper considers a finite difference scheme for modelling the convection/diffusion equation in 
strongly convective flow regimes including circumstances in which significant source terms are present. 

The main objective is to provide an alternative approach to central and/or upwind difference 
methods which €or various reasons are unsatisfactory. To illustrate the main features of the scheme, an 
assessment of its accuracy is made by means of a Taylor expansion analysis and a study of its 
performance in two model problems. As a demonstration of its generality for use in large-scale 
practical problems, some numerical results are presented for the prediction of the temperature 
distribution in a flow through a partially blocked heated rod bundle. 

The main conclusions are that in almost all practical circumstances results obtained using the scheme 
are not susceptible to false diffusion or spatial oscillations, which are, respectively, the inherent 
weaknesses in many upwind and central difference scheme formulations, and in general its use results 
in improved overall accuracy. 
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INTRODUCTION 

In a wide range of physical applications it is necessary to solve transport equations describing 
the convection and diffusion of various fluid properties (e.g. momentum, heat, chemical 
concentration, etc.). Frequently the flows are complex and multi-dimensional and therefore 
finite difference or finite element techniques provide the only methods of solution. 

In finite difference calculations the most commonly used methods employ either central 
difference schemes (CDS)l,’ or upwind difference methods (UDS)1,2 depending on the range 
of Reynolds or Peclet numbers of interest. In many practical problems the Reynolds (Peclet) 
numbers are high and it is well known that in these circumstances central difference methods 
give rise to non-physical spatial ~scillations.~’~ In addition, they are unsuitable for iterative 
solution methods.1 

To overcome this problem the upwind difference scheme is frequently invoked which 
produces oscillation-free solutions3 and is well suited to iterative solution methods.’ How- 
ever, it does have major shortcomings. Firstly, if significant gradients of the dependent variable 
exist normal to the streamline, and if the flow is oblique to the mesh, then considerable 
errors will arise as a consequence of false diff~sion.~ Secondly, if source terms are present 
then errors can arise as a consequence of the upstream approximation.6 Attempts have been 
made to improve accuracy by the use of a hybrid differencing scheme HDS1*2 which reduces 
to CDS or UDS depending on whether the local mesh Reynolds (Peclet) number is less than 
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or greater than 2, respectively. Clearly, however, by definition of the HDS the problems of 
false diffusion and mesh displacement of the solution will still exist at mesh Reynolds (Peclet) 
numbers larger than 2. 

This paper presents both an analysis and numerical applications of a vector upstream 
differencing scheme (VUDS) which was produced to eliminate these shortcomings. This 
scheme employs an upstream approximation along a direction dictated by the local stream- 
line, and in this respect has similarities with a scheme produced by Raithby.6 However, in 
addition it contains a source correction term which aims to eliminate mesh displacement effects 
inherent in upstream weighted difference schemes. Reference should also be made here to 
the work of Leohard,16 where pure convection with source term is successfully treated and in 
the finite element context, a Streamline Upwind Procedure which avoids cross-wind diffusion 
has been proposed by Hughes et a1.I6 The analysis as now described will apply only to the 
steady state, although generalisation of the treatment to include transient problems is 
currently in progress. 

CONSERVATION EQUATION 

The conservation equation for the transport of the variable # by convection and diffusion 
may be written in the following form: 

where p =density, u = (u, u, w )  velocity, r is the exchange coefficient and S is the source. In 
control volume analysis, equation (1) is integrated over a control volume to give 

Is (pu#-FV#).ndS= S d V  I 
where n denotes an outward normal, and the finite difference approximations are applied to 
the surface face fluxes. In general, the diffusion terms provide a stabilising influence and the 
well-known central difference approximation can be applied. In this paper the main point of 
interest is to describe the VUDS approximation of the convection terms in the high Peclet 
number regime, and this is given in the next section. Throughout we shall refer to the 
dimensionless group puL/r, relating convection to diffusion as the Peclet number, implying # 
represents energy, although the analysis remains general for arbitrary 4 satisfying equation 
(1). 

VECTOR UPSTREAM DIFFERENCING SCHEME 

In  describing the VUDS, the transport of 4 across the x+ face only will be considered. 
Analogous expressions exist for the remaining three faces. Now it is usually argued that if 
convection dominates then the transport of 4 by convection depends on upstream conditions 
and this therefore should be reflected in the locally assumed profile in deriving the scheme. 

For example, if there are no sources then the gradient of b, in the streamwise direction 
should be small and the normal gradient will depend on the upstream conditions. This was 
recognised by Raithby? who derived a scheme based on a locally assumed profile of the form 

4 = C,+C,n (3)  
relative to a local origin at x+ (see Figure 1). However, if significant sources are present then 
the gradient of # along the streamline is not necessarily small. To accommodate this 
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Figure 1. Two-dimensional control volume 

phenomenon, the VUDS is derived on the assumption that 

6,=C,+C,n+C,s (4) 

To ensure a linear distribution normal to the streamline this profile is fitted to 6,i,j, 6,i,i-r. In 
addition, ignoring curvature effects, we may write (see Figure 1 )  

where S denotes a source correction to allow for the heat gained by the fluid along the 
streamline and us denotes the stream velocity. The basic assumption behind the VUDS is to 
consider S as a control volume averaged property, and we take 

By substituting this approximation into equation (5) a third condition is determined and 
hence the constants C1, C,, C,  can be evaluated. It should be mentioned that this approach 
contains an approximation. Strictly, the right-hand side should also contain a term V . rV6, 
and an approximation for this term may also be included if desired. Except in very 
specialised circumstances, such a correction is not necessary and the simplified version has 
been taken in most practical applications of the VUDS to date. 

Physically this approximation of <b,+ is a definition of 6, at (i,j') based on linear 
interpolation between 6,i,j and 6,i,j-l, together with a correction term to allow for the 
upstream approximation. If u, z1 denote components of us in the x, y directions, respectively, 
and A,, h, have magnitude unity with the sign of u, z1 respectively, then for a general flow 
direction a mathematically compact expression for the convective flux of 6, across the xf  
face can be written in the following form: 
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where 
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Equation (7) represents a generalisation of the formula given by Raithby.6 It reduces to his 
simpler scheme in the cases 

J,+ = 1 
s=o 

The first condition is equivalent to restricting the upstream interpolation to the vertical 
(horizontal) lines joining nodes only, in prescribing the flux of 4 in the x, (y) directions, 
taking the end-point nodes if extrapolation is required. This restriction is adequate in many 
cases but produces some loss in accuracy in circumstances where there is a significant source 
and where the 4 distribution is governed by diffusion normal to the streamline--see 
discussion on the vortex model problem later. However, for other numerical reasons the 
restriction has been found desirable in certain circumstances. Both these points will be 
discussed in more detail later. 

The flux of 4 by diffusion across the x+ face is taken to be the standard central difference 
expression 

The total transport of 4 across the x+ face by convection and diffusion is therefore 

Fx+= C,++D,+ (1 1) 

and in two dimensions the VUDS approximation to equation (2) can be written in the form 

F,+ - F,- + Fy+ - Fy- = Sii SV (12) 

SOLUTION METHODS 

In this section, before discussing questions of accuracy we consider methods available for the 
solution of VUDS. 

The typical equation corresponding to a node P may be written in the form 

a d p  = C(&+&+ + & + 4 l + , m +  + c x + h + , m + )  + Si,j SV (13) 
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where the summation extends over x+, X-, y+, y-, 

and 
c = 1 for x- and y-; CT = -1 for x+ and y+.  

The first point to note is that since the VUDS without source correction reduces to the 
UDS for flow aligned with the mesh, there is diagonal dominance and solutions themselves 
are oscillation free, at least in this case. However, the VUDS is not unconditionally 
diagonally dominant, as can be seen in the case of an equal mesh when the flow is at 45" to 
the mesh, in which case 

lad = 4 c (14+1+ lbx+l+ lcx+l) (14) 
This means that in order to ensure convergence it is advantageous to rewrite equation (13) 
into the deferred corrector form 

+#JP - c a;+&+ = (4- UP)qbP + c H%+- a:+)#Jx++ ~ x + c t , l + , , + + ~ x + ~ + , , + ~ + s P  av (15) 

where the dashes denote coefficients obtained by the UDS formulation. 
Practical experience has shown that equation (15) may be solved by employing standard 

techniques to the left-hand side for solving the UDS and treating the right-hand side as a 
modified source evaluated using values of ct, obtained from a previous iteration. This method 
is used in the numerical application considered later in the paper and for linear equations in 
4 has been found satisfactory in all cases. 

For nonlinear systems, the convergence is quite acceptable for the simplified version of the 
VUDS with Jx+ = 1, etc. For the general version convergence, using this method can be 
rather slow for nonlinear equations and there may be benefits in seeking an alternative 
method of solution. 

ACCURACY 

Taylor expansion methods 

The nature of the VUDS can to a large extent be predicted by an examination of the 
leading error terms in Taylor series expansions. In particular we consider the error in the 
finite difference scheme defined by 

.smS =L isV {FD( Ipu4.  n dS)- IpuQ,.  n dS} 

where FD( j  pu4. nS) denotes the finite difference approximation to pu4. n dS. 
Now corresponding to the x direction 

a4 h 
ax i 4 

E& = *(Ai-$ - Ai+$ (pu --) -- (Ai-$ + hi+$) 

for an equal mesh with interval of length h ,in the notation of Figure 1 
dropped). 

(17) 

( j  suffices are 
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There is a zero-order error term which only vanishes if the flow components entering and 
leaving the control volume have the same sign together with the well-known first-order false 
diffusion error term. Now corresponding to the x direction and with no source correction, 
&GDS is given by 

(1) (2) 

which is analogous to eGDS but in this case pu a4Iax is replaced by pus a4las. This means that 
the low-order error terms at least do not involve significant terms involving gradients normal 
to the stream and hence the principle cause of false diffusion is eliminated. If, in addition, the 
source correction term is added this zero-order error term is eliminated from equation (18). 
This means, for example, that distributions of 4 across regions of flow reversal will be more 
smoothly predicted than with the uncorrected scheme and overall accuracy will be improved. 

We next consider the accuracy of VUDS when significant sources are present, by reference 
to two model problems-a unidirectional flow problem where the profile is dominated by the 
convection terms and source, and a diflusion problem where the profile is governed by 
diffusion normal to the streamline. 

Unidirectional flow problem 

It was shown6 that the simplified form of the VUDS preserved the profile of the transport 
of a step change of 4 for a uniform velocity field which is source free. A similar conclusion 

applies therefore for the general form of the VUDS for flows satisfying - S - S 2 (in, for 

example, the equal mesh case) in the notation of Figure 1. An independent study indicated 
that both the general and simplified forms of the VUDS preserved an imposed sinusoidal 
profile satisfactorily, for a range of flow to mesh inclinations. (The results are not presented 
here). However in both cases, if source terms are present then the error arising as a 
consequence of the upstream approximation can mean that the predicted field is displaced. 
To see this we may consider, for example, a one-dimensional constant mass flow problem 
with a step source, shown in Figure 2. A staggered mesh is assumed with the 4 nodes at 
x = 0, 1 , 2  and the control volume boundaries at $, 14, 2;. 

2 u  1"1 

y' / , I - 
1 2 3 

Mesh nodes 

Figure 2. Unidirectional flow with source dis- 
continuity (-... source profile; -- UDS, 
VUDS without source correction; - correct 

solution, VUDS with source correction) 
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Now with the source correction term, the VUDS gives &=$, the correct solution, 
although with no correction it would reduce to the UDS and hence predict (b2 = 1. 

This apparently trivial problem serves to illustrate how the convective transport and source 
terms can become inconsistent if no source correction is made. Such discrepancies can be 
very important in some circumstances. For example, in a calculation to describe boiling 
where 4 represents the energy it is often very important to correctly predict the position of 
the boiling boundary in determining the flow field. 

Vortex model problem 

As a second example, results are presented for the predicted 4 distribution in a vortex 
consisting of a fluid rotating with constant angular velocity and containing a uniformly 
distributed source. The 4 distribution on the boundary was specified and an analytic solution 
derived. The finite difference solutions were obtained for a 9 X 9 equal mesh grid in an 
inscribed square whose centre coincided with the centre of the vortex. The finite difference 
equations were closed by specifying the values of 4 on the edges of the square according to 
the analytic solution. For constant coefficients, equation (1) may be transformed into the 
dimensionless form 

where the Peclet number is based on the radius and peripheral velocity of the vortex. The 
general solutions~' of equation (l) ,  corresponding to a boundary condition of the form 

4(1, e) = cos 6 (20) 
is given by the real part of 

(1) (2) 
4(r ,  6) = 1 - rz+Jl(rJ(-i Pe))/Jl(J(-i pe))e'" (21) 

where f denotes the Bessel function of the first kind.' 
Term (2) represents the influence of the sinusoidal boundary condition and is superim- 

posed on the familiar parabolic solution, term (1). The problem provides a very severe test 
for finite difference solutions. The parabolic term produces very steep gradients of 4 normal 
to the streamline, and hence any tendency of an upwind scheme to produce false diffusion 
effects is apparent at even modest Peclet numbers. The influence of term (2) produces a 
streamwise variation at modest Peclet numbers, thus providing an additional test for the 
finite difference calculation. 

Figure 3 gives analytical 4 profiles along the diameter 8 = 7r/4 for a mesh Peclet number of 
40, together with predictions of the full and simplified versions (Jx+ = Jx- = J,+ = .I,- = 1 cf. 
equation 8)  of the VUDS and also the HDS. Figure 3 also shows corresponding errors E of 
the three schemes at the vortex centre for a range of mesh Peclet numbers up to 50. Here E 

is defined as the difference between the analytic value (bAS and the finite difference 
predictions +ms. 

It is clear that the HDS is dominated by false diffusion at high Peclet numbers and is 
grossly inadequate. The simplified version of the VUDS, although much more accurate than 
HDS, still exhibits some false diffusion effects. The more complicated version retains good 
accuracy throughout the Peclet number range. 
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Figure 3. Vortex model problem (-- HDS; *-. VUDS, simplified version; - 
VUDS) 

PRACTICAL APPLICATIONS 

Although it is necessary and also useful to assess the accuracy of a numerical method by 
means of theoretical analysis and performance on simple model problems, it is equally 
important to evaluate its performance on large-scale industrial applications. To meet this 
latter requirement some results will now be presented for the prediction of temperature in 
disturbed flows in subchannel geometry which were produced using an application of the 
VUDS for the prediction of the temperature field in the SABRE c0de.l' 
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Figure 4. Three-dimensional control volume in subchannel 
geometry 

This code was written to solve the Navier-Stokes and energy equations in subchannel 
geometry in order to predict events on the formation of a hypothetical flow blockage, and 
thus to provide information required for fast reactor safety analysis. Such blockages are large 
enough to produce a recirculation region embedded in an otherwise unidirectional flow. It is 
therefore necessary that any finite difference representation is accurate in both flow regimes. 
This is especially important in subchannel codes such as SABRE, where the lateral mesh is 
determined by the pin pitch and is therefore rather coarse. A final requirement is that the 
scheme be amenable to iterative solution techniques which are necessary due to the large 
number of equations which need to be solved, a consequence of the three-dimensional 
capability of the code. 

Before the test problem is discussed, however, we shall describe in brief terms the 
generalisation of the VUDS to subchannel geometry. 

VUDS in subchannel geometry 

Attention is focused on a typical control volume positioned between fuel pins whose 
centres form an equilateral triangular lattice. The basic velocity nodes (u, v, w) are located 
on the faces of the control volume and are midway between adjacent temperature nodes. 
The fundamental assumption made in generalising the VUDS is that the flow between any 
pair of pins is locally two dimensional, thus enabling the treatment of the earlier section to 
be applied. 

To calculate the transverse heat flux, an axial component of velocity w,, is obtained at the 
location of x+ by interpolation from neighbouring axial velocity nodes-see Figure 4. Since 
a u-node exists at x+, F,, can then be calculated according to the two-dimensional 

I 
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treatment given in equation (7). To describe the axial flux F,, is more complicated. Full 
details are given in Lillington," but the general idea is to define three transverse components 
of velocity u::, u::, vz: (v:;, depending on the orientation of the subchannels) at the 
location of z +. 

Then again, since a w-node exists at z+, u::, and w,, (and similarly the other pairs) 
define a stream direction and enable a heat flux e: across the axial face to be calculated as 
in the two-dimensional treatment on the assumption that all the flow is in that direction. E; 
and Fz: (c;) are defined similarly. The heat flux F,, is then taken as a weighted sum of 
these three contributions 

FZ, = c Yx,F:: (22) 

Y x +  = u : 3 c  u:: (224 

where 

and the summation are over all directions. 
An overall heat balance gives an equation similar to equation (13). The solution procedure 

for the hydrodynamics equations in the SABRE code is based on the SIMPLE procedure.12 
Within this framework the system of equations for the energy are solved by applying an 
ADII3 inversion algorithm plane by plane, followed by axial block adjustment" to the 
left-hand side during which the right-hand side remains fixed and determined by values from 
the previous iteration. 

NUMERICAL RESULTS 

The importance of eliminating false diffusion will be demonstrated in a partial flow blockage 
calculation relating to the test section shown in Figure 5. This experiment, on a 281-pin 
water-cooled bundle, with the central 54 subchannels blocked, was carried out at the 
Berkeley Nuclear Laboratories of the CEGB.14 A central region of 91 electrically heated 
pins rated at 17-5 W/cm2 was surrounded by an annular region of 192 unheated pins. The 
pitch is 8-3 mm, the same for heated and unheated pins, but the diameters are 6.6 mm and 
6.1 mm, respectively. The blockage was 6 mm thick and covered 7.3% per cent of the total 
flow area. 

The calculation was performed over a 30" sector of the cross-section, taking advantage of 
the symmetry-see Figure 5. The boundary conditions were specified as horizontally uniform 
pressure at inlet and outlet of the calculation domain and corresponded to an inlet mean 
velocity of 6.5 mlsec. The inlet temperature was 20°C. 

In assessing the accuracy of any finite difference representation, it is necessary to 
unscramble which effects are due to weaknesses in the finite difference representation and 
which effects are due to weaknesses in other aspects of the modelling, notably in geometrical 
or turbulence model representations. In these results, therefore, the flow equations have 
been decoupled from the energy calculations and thus any variations are due solely to 
changes in the heat transport (a detailed description of the hydrodynamics is given in 
Reference 10). A plot of flow vectors in an axial plane through the subchannels numbers 1 to 
8 is shown in Figure 6. 

Radial distributions of temperature are shown in Figure 6 for two axial planes, distant 
d mm downstream of the blockage. The results are plotted in two radial directions-the 
corner direction from the axis of the test section towards the corner of the hexagonal 
blockage, and the centre direction from the axis to the centre of one face of the hexagon. 



VECTOR UPSTREAM DIFFERENCING SCHEME 

Connections to heated pins 

- ffow exit 

Btockage 

Heated section 

~nheated pins 

- Flow inlet 

i 

13 

Subchonnel 
reference 
numbers 

\ 

Figure 5. Geometrical details of the test section 

The directions are shown in Figure 5. Following Claei4 the temperatures are nomalised 
using 

8 = L(T- T ) / A T  (23) 
where T is the measured temperature, T’ i s  the temperature which would have been 
measured at the axial level of the blockage had the experiment been performed in the 
absence of a blockage, and AT is the mean channel temperature rise over the heated section 
(length L) if all the pins were heated. 8 represents the length downstream of the blockage 
where a measured temperature would be obtained in the absence of a blockage in a fully 
rated cluster. For a particular geometry, 8 is a measure of the local temperature rise due to 
the blockage and is independent of power, flow or blockage position. 
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Figure 6. Calculational results 

An important parameter in determining the temperature distribution in the wake is the 
turbulent exchange coefficient for heat. The results here have been obtained using a simple 
correlation based on a mixing length hypothesis of the form 

r = (24) 
in which it is assumed that the velocity fluctuation u' is a given fraction a of the bulk flow us 
and the mixing length E a given fraction f i  of the subchannel diameter D. The fluctuations of 
the velocity about the mean value are typically small, e.g. a - 0.1 near the axis in pipe 
flow." In addition, it would be expected that in subchannel geometry p would take values up 
to a maximum of unity. The numerical results were therefore obtained using a correlation of 
the form 

r = fpu,D (25) 
where f(  = a@) is taken as an empirical constant. 

In Figure 6 the continuous curve was obtained with the general form of the VUDS using 
values of f = 0.073. The broken curve was obtained with the HDS using a similar value. But 
the same curve, on the resolution illustrated, is indistinguishable from a corresponding curve 
obtained with the HDS using an alternative prescription for r based on a pipe flow 
correlation," which typically gives values &I' in the Reynolds number range of interest. The 
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explanation is that the temperature rise in HDS is almost entirely a function of the false 
diffusion and essentially independent of the impressed real diffusion. In contrast, the results 
for the VUDS exhibit the expected dependency on I7 and the curve illustrated approximately 
spans the experimental results. 

DISCUSSION 

It has been conjectured that in certain circumstances the most general form of the VUDS 
described here may produce oscillations in the solution at sufficiently high Peclet number. 
The proposed explanation is the dependency of the general scheme, in contrast to the 
simpler version, on nodes downstream of the direction of differencing in the case when the 

flow angle lies outside the range ~2 (cf. unidirectional flow problem with equal mesh 

described earlier). However, calculations for a wide range of flows have been performed at 
Winfrith using the SABRE code, incorporating the full VUDS treatment of the energy 
equation, and there has been little tendency towards oscillation in the solution or difficulties in 
procuring convergence. Under few circumstances therefore, in the treatment of the energy 
equation, has it been necessary to resort to the simpler and slightly less accurate version. 

Nevertheless recent work aimed at incorporating a VUDS treatment of the flow equations 
has indicated that convergence of the general scheme has been rather poor in certain elliptic 
flow regimes and in these circumstances it has been necessary to resort to the simpler 
version. The reasons are at present unclear, but it is possible that the performance of the 
VUDS in linear systems may be different than in nonlinear systems in respect of these 
phenomena (i.e. convergence behaviour, tendency to produce numerical oscillation). This is a 
subject of further research. 

CONCLUSIONS 

Unlike the UDS, the accuracy of the most general form of the VUDS described gives an 
approximation of the convective transport terms at high Peclet number which is not impaired 
by false diffusion when the flow is oblique to mesh. The simplified form (which corresponds 
to one given by Raithby), together with the source correction term, is slightly less accurate 
but is a marked improvement on the UDS. This is demonstrated by comparison of the finite 
difference schemes’ predictions with an analytic solution on a model vortex problem 
specifically chosen to highlight any errors in the schemes which arise as a consequence of 
false diffusion. By reverting to the simplified form if necessary, the solutions can be 
guaranteed oscillation free in all circumstances and therefore in this respect the VUDS is an 
improvement on the CDS. In addition, iterative solution techniques are available by applica- 
tion of the deferred corrector technique. 

The half -mesh displacement inadequacies inherent in the VUDS may be eliminated using 
the source corrector technique. The VUDS has been tested successfully on a large-scale 
industrial application in which the more commonly used methods employing UDS or CDS 
approximations are for various reasons inaccurate or unsuitable. 
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